Dividing Space: First Day Activity for Math Camp and for Linear Algebra (and other courses)

AMS Special Session on Math Circle Activities as a Gateway into Mathematics
Joint Mathematics Meetings, Boston MA, January 4, 2023
Teresa Magnus, Rivier University, Nashua NH

Resource

Geometry by Discovery by David Gay, John Wiley \& Sons, NY NY, 1998.

Setting the stage:

1. A point on a line divides a line into how many sections?
2. Two points on a line divide a line into how many sections?
3. Three points on a line divide a line into how many sections?
4. What can we claim? How certain are we?

Dividing a plane

1. A line divides a plane into how many regions?
2. What about two lines?
3. Three lines?
4. Four lines?
5. Five?

Dividing a plane with two lines

Three regions if parallel.

Four if they intersect.

Three Lines dividing a plane

Intersecting in a single point

Pairwise intersections

Maximize Regions with Four or more lines:

Five lines:
Four lines: 11 regions

16 regions

Place the new line so it creates as many intersections with existing lines as possible!

Pattern?

Lines	Maximum \# of regions
0	1
1	2
2	4
3	7
4	11
5	16

- Add n to previous number.
- One more than triangular numbers.
- $\frac{n \cdot(n+1)}{2}+1$

Dividing 3-dimensional space

Explore the maximum number of regions that n planes divide 3-space into.

Dividing Space with 3 Planes

http://mathandmultimedia.com/2011/05/25/intersection-of-planes-google-sketchup/

Number of dividing items	By Points on a Line	By Lines in a Plane	By Planes in Space
0	1	1	1
1		2	$\rightarrow 2$
2		4	4
3	4	7	8
4	5	11	\rightarrow ?
5		$\longrightarrow 16$	
\vdots	:	!	
n	$n+1$	$\frac{n \cdot(n+1)}{2}+$	

Sequences, Recursion, and Linear Systems

$$
\begin{gathered}
s(n)=p(n-1)+s(n-1), s(0)=p(0)=1 \\
s(n)=\left(\frac{n(n-1)}{2}+1\right)+s(n-1), s(0)=1 \\
s(n)=\frac{1}{6}\left(n^{3}+5 n+6\right)
\end{gathered}
$$

$$
\begin{aligned}
& a(1)+b\left(1^{2}\right)+c\left(1^{3}\right)=s(1)-1=1 \\
& a(2)+b\left(2^{2}\right)+c\left(2^{3}\right)=s(2)-1=3 \\
& a(3)+b\left(3^{2}\right)+c\left(3^{3}\right)=s(3)-1=7
\end{aligned} \rightarrow\left[\begin{array}{ccc|c}
1 & 1 & 1 & 1 \\
2 & 4 & 8 & 3 \\
3 & 9 & 27 & 7
\end{array}\right] \sim\left[\begin{array}{lll|c}
1 & 0 & 0 & 5 / 6 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 / 6
\end{array}\right]
$$

Undergraduate Course Foreshadowing

- Reasoning, Conjecture, and Proof
- Sequences, Series, Induction
- Visualization of Linear Spaces and Geometry
- Solving Linear Systems

More Information

- Geometry by Discovery by David Gay, John Wiley \& Sons, NY NY, 1998.
- Terri Magnus, Rivier University, Nashua NH
- tmagnus@rivier.edu

