Dividing Space: First Day Activity for Math Camp and for Linear Algebra (and other courses)

AMS Special Session on Math Circle Activities as a Gateway into Mathematics Joint Mathematics Meetings, Boston MA, January 4, 2023 Teresa Magnus, Rivier University, Nashua NH

Resource

Geometry by Discovery by David Gay, John Wiley & Sons, NY NY, 1998.

Setting the stage:

- 1. A point on a line divides a line into how many sections?
- 2. Two points on a line divide a line into how many sections?
- 3. Three points on a line divide a line into how many sections?
- 4. What can we claim? How certain are we?

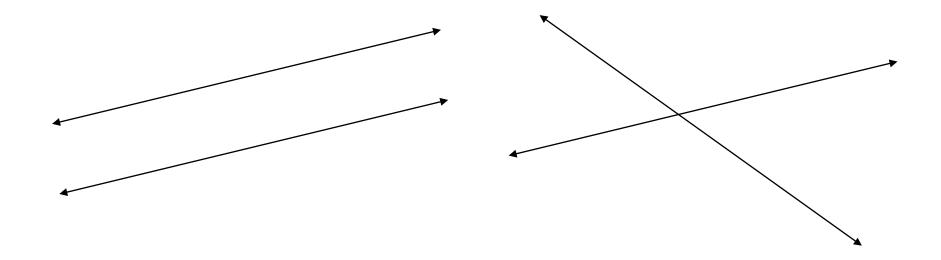
Dividing a plane

- 1. A line divides a plane into how many regions?
- 2. What about two lines?
- 3. Three lines?
- 4. Four lines?
- 5. Five?

Dividing a plane with two lines

Three regions if parallel.

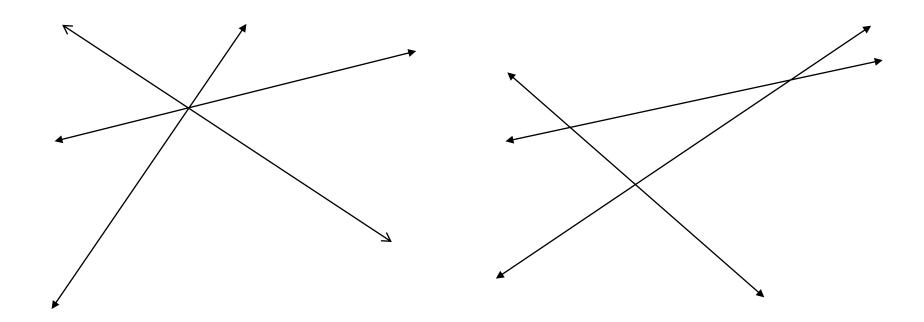
Four if they intersect.



Three Lines dividing a plane

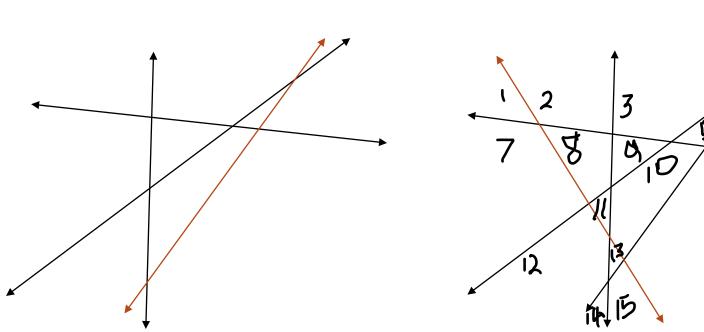
Intersecting in a single point

Pairwise intersections



Maximize Regions with Four or more lines:

Four lines: 11 regions



Five lines: 16 regions

16

Place the new line so it creates as many intersections with existing lines as possible!

Pattern?

Lines	Maximum # of regions
0	1
1	2
2	4
3	7
4	11
5	16

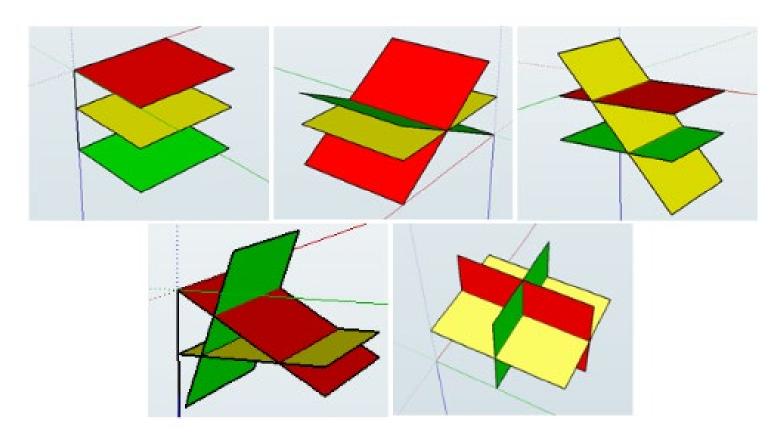
- Add *n* to previous number.
- One more than triangular numbers.

•
$$\frac{n \cdot (n+1)}{2} + 1$$

Dividing 3-dimensional space

Explore the maximum number of regions that *n* planes divide 3-space into.

Dividing Space with 3 Planes



http://mathandmultimedia.com/2011/05/25/intersection-of-planes-google-sketchup/

Number of dividing items	By Points on a Line	By Lines in a Plane	By Planes in Space
0	1	1	1
1	2	2	Ž
2	3	4	4
3	4	7	8
4	5	11	Ş
5	6	16	
.	:	*	
n	n + 1	$\frac{n\cdot(n+1)}{2}+1$	

Sequences, Recursion, and Linear Systems

$$s(n) = p(n-1) + s(n-1), s(0) = p(0) = 1$$

$$s(n) = \left(\frac{n(n-1)}{2} + 1\right) + s(n-1), s(0) = 1$$

$$s(n) = \frac{1}{6}(n^3 + 5n + 6)$$

$$a(1) + b(1^{2}) + c(1^{3}) = s(1) - 1 = 1$$

$$a(2) + b(2^{2}) + c(2^{3}) = s(2) - 1 = 3 \rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 4 & 8 & 3 \\ 3 & 9 & 27 & 7 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 5/6 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1/6 \end{bmatrix}$$

$$a(3) + b(3^{2}) + c(3^{3}) = s(3) - 1 = 7$$

Undergraduate Course Foreshadowing

- Reasoning, Conjecture, and Proof
- Sequences, Series, Induction
- Visualization of Linear Spaces and Geometry
- Solving Linear Systems

More Information

- Geometry by Discovery by David Gay, John Wiley & Sons, NY NY, 1998.
- Terri Magnus, Rivier University, Nashua NH
- tmagnus@rivier.edu